ELV90

RELIABILITY DATA

信頼性データ

INDEX

I	PAGE
1. MTBF計算值 Calculated Values of MTBF · · · · · · · · · · · · · · · · · · ·	R-1
2. 部品ディレーティング Component Derating ····································	R-2∼∠
3. 主要部品温度上昇値 Main Components Temperature Rise △T List · · · · · · · · · · · · · · · · · · ·	R-5
4. 電解コンデンサ推定寿命計算値 Electrolytic Capacitor Lifetime · · · · · · · · · · · · · · · · · · ·	R-6
5. アブノーマル試験 Abnormal Test ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	R-7~8
6. 振動試験 Vibration Test ····································	R-9
7. ノイズシミュレート試験 Noise Simulate Test ····································	R-10
8. 熱衝擊試験 Thermal Shock Test ·······I	R-11
9. IPx6試験 IPx6 Test ······I	R-12
10. 耐候性試験 Weather Resist Test····································	R-13
11. 塩水噴霧試験 Salt Spray Test····································	R-14
12. ガス腐蝕試験 Gaseous Corrosion Test・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	R-15
※ 当社標準測定条件における結果であり 参考値としてお考え願います。	

Test results are reference data based on our standard measurement condition.

1. MTBF計算值 Calculated Values of MTBF

MODEL: ELV90-12-7R5

(1) 算出方法 Calculating Method

JEITA (RCR-9102B)の部品点数法で算出されています。 それぞれの部品ごとに、部品故障率 λ_G が与えられ、各々の点数によって決定されます。 Calculated based on part count reliability projection of JEITA (RCR-9102B). Individual failure rates λ_G is given to each part and MTBF is calculated by the count of each part.

<算出式>

$$MTBF = \frac{1}{\lambda_{equip}} = \frac{1}{\sum_{i=1}^{n} n_i (\lambda_G \pi_Q)_i} \times 10^6$$
 時間(hours)

λequip :全機器故障率 (故障数/10⁶時間)

Total Equipment Failure Rate (Failure / 10⁶hours)

 λ_G :i 番目の同属部品に対する故障率(故障数 $/10^6$ 時間)

Generic Failure Rate for The ith Generic Part (Failure / 10⁶hours)

ni :i 番目の同属部品の個数

Quantity of ith Generic Part

n :異なった同属部品のカテゴリーの数

Number of Different Generic Part Categories

 π_{Ω} :i 番目の同属部品に対する品質ファクタ (π_{Ω} =1)

Generic Quality Factor for The ith Generic Part (π_0 =1)

(2) MTBF値 MTBF Value

G_F: 地上固定 (Ground, Fixed)

RCR-9102B

MTBF ≒ 215,807 時間 (hours)

2. 部品ディレーティング Components Derating

MODEL: ELV90-12-7R5

(1) 算出方法 Calculating Method

(a) 測定方法 Measuring method

•取付方法	:標準取付	•周囲温度	:50℃
Mounting method	Standard mounting	Ambient temperature	;
•入力電圧	:100, 200VAC	•出力電圧、電流	:12V, 100%
Input voltage		Output voltage & cur	rent

(b) 半導体 Semiconductors

ケース温度、消費電力、熱抵抗より使用状態の接合点温度を求め 最大定格、接合点温度との比較を求めました。

Compared with maximum junction temperature and actual one which is calculated based on case temperature, power dissipation and thermal impedance.

(c) IC、抵抗、コンデンサ等 IC, Resistors, Capacitors, etc.

周囲温度、使用状態、消費電力など、個々の値は設計基準内に入っています。 Ambient temperature, operating condition, power dissipation and so on are within derating criteria.

(d) 熱抵抗算出方法 Calculating method of thermal impedance

$$\theta j - c = \frac{Tj(max) - Tc}{Pch(max)}$$

$$\theta j - a = \frac{Tj(max) - Ta'}{Pch(max)}$$

Tc :ディレーティングの始まるケース温度 一般に25℃

Case Temperature at Start Point of Derating; 25°C in General

Ta' :ディレーティングの始まる周囲温度 一般に25℃

Ambient Temperature at Start Point of Derating; 25°C in General

Pch(max) :最大チャネル損失

Maximum Channel Dissipation

Tj(max) :最大接合点(チャネル)温度

(Tch(max)) Maximum Junction (channel) Temperature

θj-c :接合点(チャネル)からケースまでの熱抵抗

(θch-c) Thermal Impedance between Junction (channel) and Case

θj-a :接合点(チャネル)から周囲までの熱抵抗

(θch-a) Thermal Impedance between Junction (channel) and Ambient

(2) 部品ディレーティング表 Component Derating List

部品番号	Vin = 100VAC	Load = 100%	$Ta = 50^{\circ}C$
Location No.	,		
Q1	$Tj (max) = 150 ^{\circ}C$	θj-c = 3.75 °C/W	
IPA50R250CP	Pch = 1.77 W	$\Delta Tc = 48.4 ^{\circ}C$	Tc= 98.4 °C
INFINEON	$Tj = Tc + ((\theta j-c) \times Pch) = 105.0 $ °C		
	D.F. = 70.0 %		
Q2	Tj (max) = $150 ^{\circ}$ C	θ j-c = 3.8 °C/W	
SPA08N80C3	Pch = 1.95 W	$\Delta Tc = 58.5 ^{\circ}C$	Tc=108.5 °C
INFINEON	$Tj = Tc + ((\theta j-c) \times Pch) = 115.9 ^{\circ}\text{C}$		
	D.F. = 77.3 %	00	
Q21	Tj (max) = 175 °C	θ j-c = 0.7 °C/W	T 1011 00
IPP111N15N3G	Pch = 1.02 W	$\Delta Tc = 54.1 ^{\circ}C$	Tc= 104.1 °C
INFINEON	$Tj = Tc + ((\theta j - c) \times Pch) = 104.8 ^{\circ}C$		
D1	D.F. = 59.9 %	0: 2.2 °C/W	
D1 D10XB60	Tj (max) = 150 °C Pd = 2.42 W	θ j-c = 2.3 °C/W Δ Tc = 53.7 °C	Tc= 103.7 °C
SHINDENGEN	$T_j = T_c + ((\theta_{j-c}) \times P_d) = 109.3 ^{\circ}C$	$\Delta 10 - 35.7 \text{ C}$	10-103.7 C
SHINDENGEN	D.F. = 72.8 %		
D2	Tj (max) = 150 °C	θ j-c = 4.5 °C/W	
YG981S6R	Pd = 0.67 W	$\Delta Tc = 46.4 ^{\circ}C$	Tc= 96.4 °C
FUJI ELECTRIC	$Tj = Tc + ((\theta j-c) \times Pd) = 99.4 ^{\circ}C$	210 10.1 0	70.1
	D.F. = 66.3 %		
D21	$Tj (max) = 150 ^{\circ}C$	$\theta j - c = 1.75 ^{\circ}\text{C/W}$	
YG865C15R	Pd = 0.24 W	$\Delta Tc = 47.2 ^{\circ}C$	Tc= 97.2 °C
FUJI ELECTRIC	$Tj = Tc + ((\theta j - c) \times Pd) = 97.6 ^{\circ}C$		
	D.F. = 65.1 %		
D102	$Tj (max) = 150 ^{\circ}C$	θ j-a = 240 °C/W	
CRF02	Pd = 0.08 W	$\Delta Ta = 58.2 ^{\circ}C$	Ta= 108.2 ℃
TOSHIBA	$Tj = Ta + ((\theta j-a) \times Pd) = 125.6 ^{\circ}C$		
	D.F. = 83.7 %		
A102	Tj (max) = $150 ^{\circ}$ C	θ j-a = 180 °C/W	T 04.4.0G
TDA4863-2G	Pch = 0.117 W	$\Delta Ta = 44.4 ^{\circ}C$	Ta= 94.4 °C
INFINEON	$Tj = Ta + ((\theta j-a) \times Pch) = 115.5 ^{\circ}\text{C}$		
A 102	D.F. = 77.0 %	0: a = 195 °C/W	
A103 ICE2QS03G	Tj (max) = 150 °C Pch = 0.044 W	θ j-a = 185 °C/W Δ Ta = 43.9 °C	Ta= 93.9 ℃
INFINEON	$T_j = T_a + ((\theta_{j-a}) \times P_{ch}) = 102.0 ^{\circ}\text{C}$	Δ1a – 43.9 C	1a- 33.3 U
INTINEON	D.F. = 68.0 %		
A201	$Tj (max) = 150 ^{\circ}C$	θj-c = 95 °C/W	
TEA1791T	Pch = 0.02 W	$\Delta Tc = 44.1 \degree C$	Tc= 94.1 °C
NXP	$T_i = T_c + ((\theta_i - c) \times P_c h) = 95.8 ^{\circ}C$	0	/ 0
	D.F. = 63.8 %		
A202	$Tj (max) = 140 ^{\circ}C$	θ j-c = 144 °C/W	
HA17431GUPTL-E		$\Delta Tc = 42.1 ^{\circ}C$	Tc= 92.1 °C
RENESAS	$Tj = Tc + ((\theta j-c) \times Pch) = 101.7 \degree C$		
	D.F. = 72.7 %		
PC101	$Tj (max) = 125 ^{\circ}C$	θ j-c = 330 °C/W	
PS2381	Pd = 0.01 W	$\Delta Tc = 41.1 ^{\circ}C$	Tc= 91.1 °C
(LED)	$Tj = Tc + ((\theta j - c) \times Pd) = 94.8 ^{\circ}\text{C}$		
RENESAS	D.F. = 75.8 %		

部品番号 Location No.	Vin = 200VAC	Load = 100%	$Ta = 50^{\circ}C$
Q1	$Tj (max) = 150 ^{\circ}C$	θj-c = 3.75 °C/W	
IPA50R250CP	Pch = 0.98 W	$\Delta Tc = 38.5 ^{\circ}C$	Tc= 88.5 °C
INFINEON	$Tj = Tc + ((\theta j-c) \times Pch) = 92.2 ^{\circ}C$		
	D.F. = 61.5 %		
Q2	Tj (max) = 150 $^{\circ}$ C	θ j-c = 3.8 °C/W	
SPA08N80C3	Pch = 1.95 W	$\Delta Tc = 54.0 ^{\circ}C$	Tc= 104.0 °C
INFINEON	$Tj = Tc + ((\theta j - c) \times Pch) = 111.4 ^{\circ}C$		
	D.F. = 74.3 %		
Q21	Tj (max) = 175 $^{\circ}$ C	θ j-c = 0.7 °C/W	
IPP111N15N3G	Pch = 1.02 W	$\Delta Tc = 49.9 ^{\circ}C$	Tc= 99.9 °C
INFINEON	$Tj = Tc + ((\theta j - c) \times Pch) = 100.6 ^{\circ}C$		
P.1	D.F. = 57.5 %	0: 0.00 MI	
D1	Tj (max) = $150 ^{\circ}\text{C}$	θ j-c = 2.3 °C/W	T 07.6 %C
D10XB60	Pd = 1.19 W	$\Delta Tc = 37.6 ^{\circ}C$	Tc= 87.6 °C
SHINDENGEN	Tj = Tc + $((\theta_{j-c}) \times Pd) = 90.3$ °C D.F. = 60.2 %		
D2	$Tj (max) = 150 ^{\circ}C$	θ j-c = 4.5 °C/W	
YG981S6R	Pd = 0.71 W	$\Delta Tc = 40.6 ^{\circ}C$	Tc= 90.6 °C
FUJI ELECTRIC	$T_j = T_c + ((\theta_{j-c}) \times P_d) = 93.8 ^{\circ}\text{C}$	Д1 с 40.0 С	16 70.0 C
1 OJI ELLE TRIC	D.F. = 62.5%		
D21	Tj (max) = $150 ^{\circ}$ C	$\theta_{j-c} = 1.75 ^{\circ}\text{C/W}$	
YG865C15R	Pd = 0.24 W	$\Delta Tc = 43.4 ^{\circ}C$	Tc= 93.4 °C
FUJI ELECTRIC	$Tj = Tc + ((\theta j-c) \times Pd) = 93.8 ^{\circ}C$		
	D.F. = 62.5 %		
D102	Tj (max) = 150 °C	θ j-a = 240 °C/W	
CRF02	Pd = 0.08 W	$\Delta Ta = 54.1 ^{\circ}C$	Ta= 104.1 °C
TOSHIBA	$Tj = Ta + ((\theta j - a) \times Pd) = 125.6 ^{\circ}C$		
	D.F. = 83.7 %		
A102	$Tj (max) = 150 \degree C$	θ j-a = 180 °C/W	
TDA4863-2G	Pch = 0.117 W	$\Delta Ta = 39.3 ^{\circ}C$	Ta= 89.3 °C
INFINEON	$Tj = Ta + ((\theta j - a) \times Pch) = 110.4 ^{\circ}C$		
	D.F. = 73.6 %	0.7	
A103	$Tj (max) = 150 ^{\circ}C$	θ j-a = 185 °C/W	00
ICE2QS03G	Pch = 0.044 W	$\Delta Ta = 39.8 ^{\circ}\text{C}$	Ta= 89.8 °C
INFINEON	$Tj = Ta + ((\theta j-a) \times Pch) = 97.9 ^{\circ}\text{C}$		
4201	D.F. = 65.3 %	0. 07 °C /III	
A201	Tj (max) = $150 ^{\circ}$ C	θ j-c = 95 °C/W	T 00.5 %
TEA1791T	Pch = 0.02 W	$\Delta Tc = 40.5 ^{\circ}C$	Tc= 90.5 °C
NXP	Tj = Tc + $((\theta_{j-c}) \times Pch) = 92.2 ^{\circ}\text{C}$ D.F. = 61.4 %		
A202	$T_i(max) = 140 ^{\circ}C$	θj-c = 144 °C/W	
HA17431GUPTL-E	Pch = 0.07 W	$\Delta Tc = 38.5 \degree C$	Tc= 88.5 °C
RENESAS	$T_i = T_c + ((\theta_i - c) \times P_c h) = 98.1 ^{\circ}C$	<u> </u>	10 00.5 0
121,120110	D.F. = 70.1 %		
PC101	Tj (max) = 125 °C	θj-c = 330 °C/W	
PS2381	Pd = 0.01 W	$\Delta Tc = 36.8 ^{\circ}C$	Tc= 86.8 °C
(LED)	$Tj = Tc + ((\theta j-c) \times Pd) = 90.5 $ °C		
RENESAS	D.F. = 72.4 %		

3. 主要部品温度上昇值 Main Components Temperature Rise △T List

MODEL: ELV90-12-7R5

(1) 測定条件 Measuring Conditions

	標準取付 Standard Mounting
取付方法 Mounting Method	*他の取付方法は標準取付方法と同等な結果となります。 Other mounting methods was same result with standard mounting method.
入力電圧 Vin	
Input Voltage	100,200VAC
出力電圧 Vo	
Output Voltage	12VDC
出力電流 Io	
Output Current	100%

(2) 測定結果 Measuring Results

		Δ T Temperature Rise ($^{\circ}$ C)						
出え	カディレーティング	Io=1	00%					
(Output Derating	Ta=50°C	Ta=50°C					
部品番号 Location No.	部品名 Part name	100VAC	200VAC					
Q1	MOSFET	48.4	38.5					
Q2	MOSFET	58.5	54.0					
Q21	MOSFET	54.1	49.9					
D1	BRIDGE DIODE	53.7	37.6					
D2	DIODE	46.4	40.6					
D21	DIODE	47.2	43.4					
D102	CHIP DIODE	58.2	54.1					
A102	CHIP IC	44.4	39.3					
A103	CHIP IC	43.9	39.8					
A201	CHIP IC	44.1	40.5					
A202	CHIP IC	42.1	38.5					
T1	TRANS	56.9	52.8					
L2	CHOKE COIL	52.9	34.9					
L4	PFC CHOKE COIL	48.9	40.3					
L21	CHOKE COIL	45.4	41.6					
C3	E.CAP.	40.2	35.1					
C4	E.CAP.	41.6	37.0					
C21	E.CAP.	41.4	37.8					
C22	E.CAP.	40.5	36.8					
C23	E.CAP.	38.4	34.6					
C24	E.CAP.	41.9	38.5					
PC101	PHOTO COUPLER	41.1	36.8					

4. 電解コンデンサ推定寿命計算値

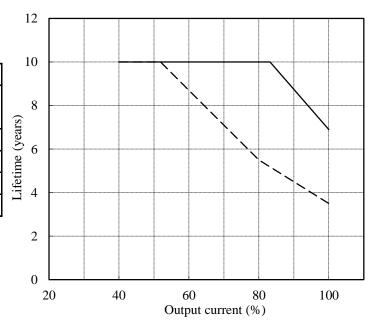
Electrolytic Capacitor Lifetime

MODEL: ELV90-12-7R5

空冷条件:自然空冷

Cooling condition: Convection cooling

取付方法:標準取付


Mounting Method: Standard Mounting

(a)(b)(c)(d)(d)(e)<l

Conditions Ta 40°C : — — — 50°C : — — —


Vin=100VAC

	Lifetime (years)										
Load (%)	Ta=	Ta=									
	40℃	50°C									
40	10.0	10.0									
60	10.0	8.7									
80	10.0	5.5									
100	6.9	3.5									

Vin=200VAC

	Lifetime (years)										
Load (%)	Ta=	Ta=									
	40℃	50°C									
40	10.0	10.0									
60	10.0	9.5									
80	10.0	6.7									
100	9.5	4.8									

^{*}他の取付方法と標準取付方法は、同等な結果となります。

Other mounting methods was same result with standard mounting method.

5. アブノーマル試験 Abnormal Test

MODEL: ELV90-12-7R5

(1) 試験条件 Test Conditions

Input: 200VAC Output: 12V, 7.5A Ta: 25°C 70%RH

(2) 試験結果 Test Results

(Da: Damaged)

	(Da : Damaged)																
	Test n	osition		est								Т	est	resu	lt		
	mo	ode					ı				T				ı		
					a	b	c	d	e	f	g	h	I	J	k	l	
			シ	オ							F 1	О	О	Ш	変	そ	
No.	部品No.	試験端子	3	1	発火	発煙	破裂	異臭	赤	破損	ユー	V	C	出力	変化な	の	記事
110.	дрицичо.	1-400/51111 1		プ	火	煙	裂	臭	熱	損	ズ	P	P	断	な	他	□ →
			ト	ン							断	_		121	し	,_	
						4)t	þ	wn			ut	change		
	Location	Test	Short	Open	Fire	Smoke	Burst	Smell	Red hot	Damaged	blown			output	han	Others	Note
	No.	point	Sh	Ор	汪	Sm	Bu	Sn	eq	am	Fuse					Oth	Note
						0.1			R	D	Fu			No	No		
1		D		\circ													Hiccup
2		G		0													Hiccup
3	Q1	S		0												0	Hiccup
4	Qī	D-G	\bigcirc							\circ	\circ			\bigcirc			FUSE:F1 Da: Q1,R142
5		D-S	0								0			0			FUSE:F1
6		G-S	0													0	Hiccup
7		D		0										\circ			
8		G		0						\circ	0			0			FUSE:F2
9		S		0)			0			Da: Z102,Q2,A103
	Q2																FUSE:F2
10		D-G	0							0	0			0			Da: Z101,A103
11		D-S	\bigcirc							\circ	\circ			\bigcirc			FUSE:F2 Da: Z102,A103
12		G-S	0											0			Da. 2102,A103
13		D)		0	入力電力増加
13		D		0													Input power increase
14		G		\bigcirc												\bigcirc	入力電力増加 Input power increase
15	Q21	S		0												\bigcirc	入力電力増加
	Q21		(\cup										0		0	Input power increase
16		D-S	0											0			
17 18		G-D G-S	0											0	0		
		G-S													\cup		出力リップル大
19	C3			0												\circ	Output ripple increase
20			\bigcirc								\bigcirc			\bigcirc			FUSE:F1
21	C21			0												\circ	出力リップル大 Output ripple increase
22	C21		0										0	0			Output ripple increase
23		1 (+)		0													
24		2 (~)		0										0			
25		3 (~)		0										0			
26	D1	4 (-)		0										0			
27		1-2	\circ								\circ			0			FUSE:F1
28		2-3	\circ								\bigcirc			\circ			FUSE:F1
29		3-4	0								0			0			FUSE:F1

(Da:Damaged)

Part		(Da : Damaged)																
No.		Test p	osition				Test result											
No. 部品No. 試験端子				Ш	Jue	2	h	_	A	۵	f	σ	h	Т	i	1 _z	1	
No.						а	U		u		1		- 11	1	J		1	
Location No. Point Po					オ				_	١.			\circ	\circ	ж	変	7	
Location No. Point Po	No.	部品No.	試験端子	日		発	発	破	異	赤	破	Ī		Č	力	化	の	記事
Location No. Post Log Log		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	H 100 C 1111			火	煙	殺	旲	烈	孭			Р	断	な		,
No. Politic No.				\ \r														
No. Politic No.							0) t	þ	wn			out	ıge		
No. Politic No.				ort	en	re	oke	ırst	llət	þ	ag(blo			ut	har	ıers	Note
A-K		No.	point	Sh	Ö	臣	Sm	Bı	Sn) Sed	ar	se					Otl	11010
D2 A-K O O O Da-Ol										Ā	Γ	Fu			Ň	ž		
A-K A-	30	D2	K		0						\bigcirc	\bigcirc			\circ			
A1	31	D2	A-K	\bigcirc							\bigcirc	\bigcirc			\bigcirc			FUSE:F1
D21				0	_))						Da: Q1 入力雷力 増 加
D21	32		A1		\circ												\circ	
A-K	33		A2.		\bigcirc												\bigcirc	入力電力増加
R	-	D21)	Input power increase 入力雷力增加
Bare	34		K		\circ												\circ	
1				\circ											\bigcirc			
A-R		D101			\circ											\circ		
39 40 41 42 43 44 6 6 7,8,9 0 10 0 10 0 10 10 10		Divi		\circ													\circ	Hiccup
40 41 42 43 44 6 6 6 78,9 6 78,9					_													
41 42 43 44 44 44 44 44 44															\bigcirc			
7,8,9 ○ ○ ○ ○ ○ ○ ○ ○ ○																	_	
10 10 10 10 10 10 10 10																		Hiccup
T1																	_	入力電力増加
11	43		10		\circ												\bigcirc	Input power increase
12,13,14 ○ ○ ○ ○ ○ ○ ○ ○ ○	44	T1	11		0												\circ	
1-3	45		12,13,14		0										\circ			input power mercuse
48 7,8,9 - 12,13,14				\circ														
12,13,14 10 10-11 10 10 10-11 10 10	47			\bigcirc													\circ	Hiccup
12,13,14 10-11 11-11	18		7,8,9 -															
50																		
1				\circ	_													_
1	50		2		\circ												\bigcirc	
S2 S	51		6		\circ												\bigcirc	Input power increase
Sample	52		8		0												\circ	
L4 10	53		Q		\cap													入力電力増加
54 14 10 0 Input power increase 55 12 0 Hiccup 56 2-12 0 0 FUSE:F1 57 6-8 0 0 FUSE:F1 58 9.10 0 FUSE:F1 58 9.10 0 FUSE:F1		т 4																Input power increase 入力電力増加
56 2-12 0 0 0 FUSE:F1 Da: Q1 57 6-8 0 0 0 0 FUSE:F1 Da: L4 FUSE:F1 Da: L4 FUSE:F1		L4																Input power increase
56	55		12		0												0	
57 6-8 0 0 FUSE:F1 Da:L4 58 9 10 0 FUSE:F1	56		2-12	\bigcirc							\bigcirc	\circ			\bigcirc			
58 9.10 C FUSE:F1	57		6-8	\cap							\cap	\cap			\cap			FUSE:F1
	-																	
	58		9-10	\circ							\circ	0						

6. 振動試験 Vibration Test

MODEL: ELV60-24-2R5*

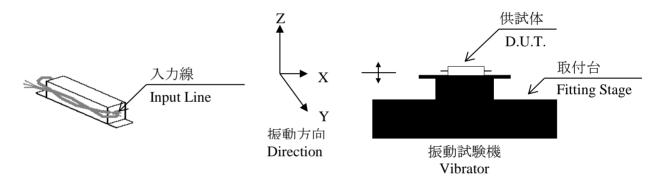
(1) 振動試験種類 Vibration Test Class

掃引振動数耐久試験 Frequency variable endurance test

(2) 使用振動試験装置 Equipment Used

IMV㈱ ・制御部 : RC-1120 ・加振部 : VS-1031-200

IMV CORP Controller Vibrator


(3) 試験条件 Test Conditions

·周波数範囲 : 10~55Hz ·振動方向 : X, Y, Z ·掃引時間 : 1.0分間 Sweep frequency Direction Sweep time 1.0min

•試験時間 : 各方向共 1時間 •加速度 : 一定 19.6m/s² (2G)

Sweep count 1 hour each Acceleration Constant

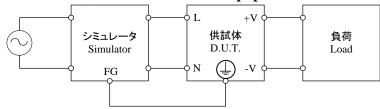
(4) 試験方法 Test Method

(5) 判定条件 Acceptable Condition

1.破壊しない事

Not to be broken.

2.試験後の出力に異常がない事


No abnormal output after test.

(6) 試験結果 Test Results

- 注)*ELV90は、機構が同様であるELV60-24-2R5を代表として試験しております。
- Note) * For ELV90, test is done on representative model ELV60-24-2R5 which has the equivalent mechanical structure.

MODEL: ELV90-12-7R5

(1) 試験回路及び測定器 Test Circuit and Equipment

シミュレータ: INS-4320(A) (ノイズ研究所)

Simulator (Noise Laboratory Co.,LTD)

(2) 試験条件 Test Conditions

・入力電圧 : 100, 200VAC ・ノイズ電圧 : 0~2kV

Input voltage Noise level

·出力電圧 : 定格 ·位相 : 0~360 deg

Output Voltage Rated Phase

•出力電流 : min, 100% •極性 : +,-

Output current Polarity

•周囲温度 : 25°C • 印加モード : コモン、ノーマル

Ambient temperature Mode Common, Normal

•パルス幅 : 50~1000ns •トリガ選択 : Line

Pulse width Trigger select

(3) 判定条件 Acceptable Condition

1. 試験中、5%を超える出力電圧の変動のない事

The regulation of output voltage must not exceed 5% of initial value during test.

2. 試験後の出力電圧は初期値から変動していない事

The output voltage must be within the regulation of specification after the test.

3. 発煙・発火のない事

Smoke and fire are not allowed.

(4) 試験結果 Test Results

8. 熱衝擊試験 Thermal Shock Test

MODEL: ELV90-12-7R5

(1) 使用計測器 Equipment Used

TSA-70H-W: ESPEC

(2) 試験条件 Test Conditions

1cycle •電源周囲温度 :-55°C ⇔ 105°C +105°C **Ambient Temperature** 70min •試験時間 :図参照 Test Time Refer to Dwg. •試験サイクル :200 サイクル 200 Cycles Test Cycle •非動作 -55℃ 70min Not Operating

(3) 試験方法 Test Method

初期測定の後、供試品を試験槽に入れ、上記サイクルで試験を行う。200サイクル後に、 供試品を常温常湿下に1時間放置し、出力に異常がない事を確認する。

Before testing, check if there is no abnormal output, then put the D.U.T. in testing chamber, and test it according to the above cycle. 200 cycles later, leave it for 1 hour at the room temperature, then check if there is no abnormal output.

(4) 判定条件 Acceptable Condition

試験後の出力に異常がない事 No abnormal output after test.

(5) 試験結果 Test Results

9. IPx6試験 IPx6 Test

MODEL: ELV90-12-7R5

(1) 使用試験装置 Equipment Used

加圧水試験装置: 杉システム工業

Pressurized water test equipment : Sugi System Industrial

(2) 試験条件 Test Conditions

·規格: JIS C 0926 IPx6

Standard

·水の流量 : 100 l/min ±5%

Water flow rate

·噴射距離 : 2.5~3m

Injection distance

•試験時間 : 3分

Test time 3 min

(3) 試験方法 Test Method

初期測定の後、供試品に上記条件にてIPx6試験を行う。試験終了後に、出力に異常がない事を確認する。

Before testing, check if there is no abnormal output, then put the D.U.T. in testing chamber, and perform IPx6 test according to the above condition. After test, then check if there is no abnormal output.

(4) 判定条件 Acceptable Condition

1.水が電源内部に浸入していない事

Water do not penetrate inside of power supply.

2.試験後の出力に異常がない事

No abnormal output after test.

(5) 試験結果 Test Results

10. 耐候性試験 Weather Resist Test

MODEL: ELV90-12-7R5

(1) 使用試験装置 Equipment Used

S80(サンシャインウェザーメーター) : スガ試験機㈱

S80(Sunshine weather meter) Suga test instruments Co., Ltd.

(2) 試験条件 Test Conditions

JIS D 0205:1987 自動車部品の耐候性試験 (促進耐候性試験 WAN-1S)

JIS D 0205:1987 Test of Weatherability for Automotive Parts

(Accelerated Weathering Test WAN-1S)

・水 噴 霧 : あり

Water injection Available ・ブラックパネル温度 : 65℃

Black panel temperature

•試験時間 : 220時間 Test time : 220 hours

(3) 試験方法 Test Method

初期測定の後、供試品を試験槽に入れ、上記試験時間で試験を行う。試験終了後に、出力に異常がない事を確認する。

Before testing, check if there is no abnormal output, then put the D.U.T. in testing chamber, and test it according to the above hours. After test, then check if there is no abnormal output.

(4) 判定条件 Acceptable Condition

試験後の出力に異常がない事 No abnormal output after test.

(5) 試験結果 Test Results

11. 塩水噴霧試験 Salt spray test

MODEL: ELV90-12-7R5

(1) 使用試験装置 Equipment Used

 CASS-90
 : スガ試験機(株)

Suga test instruments Co., Ltd.

(2) 試験条件 Test Conditions

·塩水濃度 : 5% NaCl 水溶液、pH=6.5~7.2 The concentration of salt 5% NaCl solution、pH=6.5~7.2

·試験温度 : 35±1℃

Test tempurature

•噴霧量 : 1.5±0.5ml/h at 80cm²

Spraying quantity

·試験時間 : 96時間 Test time : 96 hours

(3) 試験方法 Test Method

初期測定の後、供試品を試験槽に入れ、上記試験時間で試験を行う。試験終了後に、出力に異常がない事を確認する。

Before testing, check if there is no abnormal output, then put the D.U.T. in testing chamber, and test it according to the above hours. After Test, then check if there is no abnormal output.

(4) 判定条件 Acceptable Condition

試験後の出力に異常がない事 No abnormal output after test.

(5) 試験結果 Test Results

12. ガス腐蝕試験 Gaseous corrosion test

MODEL: ELV90-12-7R5

(1) 使用試験装置 Equipment Used

KG-120HT4 : ファクトケイ株式会社

FactK inc.

(2) 試験条件 Test Conditions

·SO₂, H₂Sの混合気体 : 5ppm

Mixed Gas of SO₂ and H₂S

・試験時間 : 10日間
 Test Time 10 Days
 ・試験温度 : 40℃

Test Temperature

·試験湿度 : 72~78%RH

Test Humidity

•非動作

Not Operating

(3) 試験方法 Test Method

初期測定の後、供試品を試験槽に入れ、上記日数で試験を行う。試験終了後に、 出力に異常がない事を確認する。

Before testing, check if there is no abnormal output, then put the D.U.T. in testing chamber, and test it according to the above days. Testing later, then check if there is no abnormal output.

(4) 判定条件 Acceptable Condition

試験後の出力に異常がない事 No abnormal output after test.

(5) 試験結果 Test Results