CCG10-12-xxDxC

C307-01-01/C

SPECIFICATIONS (1/2)

MODEL			CCG10-12-12DxC	CCG10-12-15DxC	
INPUT					
Input Voltage Range	Input Voltage Range VDC		4.5 - 18		
Efficiency (Typ)	(*1)	%	89	90	
Input Current (Typ)	(*1)	Α	0.944	0.944	
OUTPUT					
Nominal Output Voltage		VDC	±12	±15	
Output Voltage Accuracy	(*1)	%	±2		
Maximum Output Current		Α	0.42	0.34	
Maximum Output Power		W	10.08	10.2	
Maximum Line Regulation	(*2)	mV	60	75	
Maximum Load Regulation	(*3)	mV	120	150	
Maximum Load Regulation	(*10)	mV	480	600	
Temperature Coefficient		-	0.02%/°C		
Maximum Ripple & Noise	(*4)	mV	120	120	
Output Voltage Range		-	Fixe	ed	
Over Current Protection	(*5)	-	105% min.		
Over Voltage Protection		-	None		
FUNCTION					
Remote ON/OFF Control	(*6)	-	Possible		
Remote Sensing		-	None		
Parallel Operation		-	None		
Series Operation	(*6)	-	Possi	ble	
ENVIRONMENT					
Operating Temperature	(*7)	-	-40°C -	+90°C	
Storage Temperature		-	-55°C - +	-125°C	
Operating Humidity		-	5 - 95%RH (No	n Condensing)	
Storage Humidity		-	5 - 95%RH (Non Condensing)		
Vibration			At No Operating, 10 - 55Hz (Sweep for 1min.)		
			Amplitude 1.65 mm Constant (Maxi-	mum 98m/s^2), X,Y,Z 1 hour each	
Shock	(*8)	-	490.3m/s ²		
Cooling		-	Convection Cooling / Forced Air Cooling		
ISOLATION					
Withstand Voltage	(*9)	-	Input - Output : 1.5kVDC (20mA)	1min. or 1.0kVAC (20mA) 1min.	
Isolation Resistance		-	More than $100M\Omega$ at 25° C and 70° C	0%RH, Input - Output 500VDC	
STANDARD AND COMPLIANCE					
Safety			Approved by IEC/EN/UL/CSA62368-1 (Altitude ≤ 5,000m)		
MECHANICAL					
Weight (Typ.)		g	4		
Size (W x H x D)		mm	DIP: 19.0 x 11.5 x 12.4 / SMD: 19.0 x	11.8 x 12.4 (Refer to Outline Drawing)	
OTHERS					
Coating	(*11)	-	Coating on both	sides of PCB	

C307-01-01/C	SPECIFICATIONS (2/2)				
*Read Instruction Manual carefully, before using the power supply unit.					
=NOTES= *1. At 12VDC input voltage and maximum outp *2. 4.5 - 18VDC input voltage, constant load. *3. No Load - Full Load, constant input voltage. *4. External components are needed for operatio *5. OCP TYPE: Hiccup, Automatic recovery. *6. Refer to Instruction Manual. *7. Rating - Refer to Derating Curve in Instruction *8. The result is evaluated by TDK-Lambda stan	(Balanced load) n. (Refer to Instruction Manual.) on Manual.				
	odule as stand-alone. % - Full Load, Constant input voltage. (Asymmetrical load) of PCB that is objective to improve resistance against humidity and dust.				
since there is non coating area such as the s	hadowed part of component.				